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A. Introduction

I PROGRESSOF RESEARCH

This semi-annualreport describescontinuedprogresson the research.Among several

approachesin this area of research,our approachto the parametric uncertainties

are being matured everyday. This approachdealswith real parameteruncertainties

which other techniquessuchas H °° optimal control, # analysis and synthesis, and

l 1 optimal control cannot deal. The primary assumption of this approach is that

the mathematical models are well obtained so that the most of system uncertainties

can be translated into parameter uncertainties of their linear system representations.

These uncertainties may be due to modeling, nonlinearity of the physical system,

some time-varying parameters, etc.

In this report period of research, we are concentrating on implementing a com-

puter aided analysis and design tool based on new results on parametric robust sta-

bility. This implementation will help us to reveal further details in this approach.

B. Computer Aided Analysis and Design: Parametric Robust Stability

There are two basic available frameworks: coefficients of the transfer function and

parameters of the transfer function. If coefficients of the characteristic polynomial

contain parameters of interest and these coefficients are subject to perturbations

independently, we use the coefficient perturbation framework. However, this situation

is very rare and not very realistic. More general setup is the case of coefficients being

linear combinations of parameters of interests. This formulation fits the case of SISO,

SIMO and MISO. Of course, in general a MIMO system provides the characteristic

polynomial whose coefficients are nonlinear functions of parameters. So far there is

no available result to directly handle this case. However, by accepting a reasonable
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amount of conservatism, one can easily reduce this situation to the second case we

described above.

In this section some examples are given which demonstrate how this computer

aided tool is working. The package is incorporated with the well known software

MATLAB in order to improve portability. The package has not yet been completed,

and is stiU under development.

1. Interlacing Property of Single Polynomial

Consider the following polynomial,

5(i,,,):

Theorem 1

: _0 "Iv _'1 s 31"- _2 s2 Jr- " " " + _n--1 sn-1 "71-_n 8n

= ,8o + 82s 2 + &,s 4 +" :+_lS + 5ss s + ,_ss 5 +" :

&...(,) todd(0)

= 5(s)l,=j_

= if0 -- _2¢,02 -_ _4W4 -- • • _'JFjOJ (_1 -- _3W2 7L _SW 4 .... )p.

6.... (,o) _:=6odd(,o)

The polynomial 5(s) is Hurwitz stable if and only if

a) 6_v,_,(w) and _odd(W) have only/simple roots and these roots interlace.

b) For all w E 7"£, 8'odd(W)8,v_(W ) --8oadS_ven(w) > 0.

The figure 1 shows the interlacing property of Hurwitz polynomial

5(s) = 6 + 49s + 155s 2 + 280s 3 + 331s 4 + 266s 5 + 145s 6 + 52ff + lls s + s 9

Next some of the values of the coeffidents are increased to observe how the graph

changes. We selected 60,52,Sa,Ss and 6s. The figure 2 shows the changes in the graph

and the given polynomial becomes unstable when it violates the interladng property.
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The well known Kharitonov's theorem[l]

property. Consider the following

Interlacing Property of Interval Polynomial

can be easily verified by the interlacing

5(8) := & + 51s + 62s2+... + 5._1s"-1 + _.8"

where

and its four Kharitonov's polynomials

KI(s)

K2(s)

K3(s)

K4(s)

V/

:= _o+ _,s + g,s2+ g3_3+ _s' + hs5 + _,6 +...

max geven(O_), Koa a (w) andThe figure 3 shows each tube constructed by K¢tv_(W ) and _a_ max

min

Koaa(w), respectively. According to the interlacing property, in order to ensure the

stability of the family of the given polynomials, two tubes must interlace.

The figure 4 shows the development of instability in some members in the family

when selected coefficients are increased.

These can also be shown by plotting perturbation boxes in the complex plane.

The figure 5 show the traces of boxes while w moves 0 to oo. Each box has its vertices



at K,_m_(w), K_A(_), Ko_X(w) and K_(w). If any box contains the origin, it means

that there is at least one unstable polynomial in the family. The figure 5 shows the

Hurwitz stable polynomial and the figure 6 shows that the family becomes unstable

when certain coefficients are increased.

3. 12 Stability Margin in Coefficient Space

For the given Hurwitz polynomial, one often wants to know how much coefficient

perturbation can be allowed while the family of polynomials maintains Hurwitz

stability[2]. This can conveniently be measured in terms of t2 norm such as:

where

and

p := 11_611,

T[ ...... 1

6(8,A6,) := (60+ A60)+ (61+ A61)8+ ... + (6. ± A6.)_"

For the case of nonmonic polynomials (i.e., A6,, # 0), the £2 stability margin is

given

; = min{60,6., 6_}.

The expression of 6,_ is found in [2]. The figure 7 shows the graph of 6,_ and * indicates

the minimum value for our example

5(s) = 6 + 49s + 155s 2 + 280s 3 + 331s 4 + 266s s + 145s 6 + 52s 7 + 11s s + s 9

If we consider the monic polynomial (i.e., g,, = 1, A6, = 0), we have

p = min{60,5_}

Again, the expression of 6= for the monic case is found in [2].
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4. Generalized Kharitonov's Theorem

Kharitonov's theorem is powerful and elegant, but it is not very useful for studying

control systems because it assumes that all coefficients of the characteristic polynomial

perturb independently. An improved version of this theorem was introduced in [3].

For the illustrative purpose, we give the simplest version.

For the given interval polynomials

= _o+ _ + _I_2+ _" +." + _1 _Pt

= _o_+ _8 + _I_2+ _I_3+... + _2 _P2

where

i < -io_ _< oq _ ai,

and the give fixed polynomials

i=O,l,'",pi,j=l,2

= _ + _ + _ + f_i_ +... + _ _,,

= _g + _8 + f_i_ + f_]_ +... + _

The problem is to check the stability of the family of polynomials

QI(_)PI(8)+ Q_(_)p_(_).

Let us first define

K_(s) J i= K***n,n_(s ) + Koda,n_(s)

g_(s) 1 J= g_.0n,_(_) + g°_,r_=(_)

g_(_) = gLn,_..(8) + g._,=_(_)

K_(s) i J= geven,max(S ) + Kodd,,_x(S)

Step 1: Set Pl(s)= K_(s).



Step 2: check the stability of each following segment.

S_ = Q_(8)P_(s) + Q2(s)[(1 - A)K_(s) + AK_(s)]

S_2 = Q_(s)P_(s) + Q2(a)[(1 - A)K_(8) + AKa_(s)]

S_a = Q_(s)P_(s) + Q_(s)[(1 - A)K_(s) + AK_(8)]

S_4 = Ql(s)Pl(8) + Q_(a)[(1 - A)Kg(s) + AK_(s)]

S_ = QI(8)P_(8) + Q2(s)[(1 - A)K_(8) + AK_(s)]

= Q_Cs)P_Cs) + Q2(8)K_(8) - AQ2(s)K_Cs) + AQ2(s)K_(s)

= (1 - A)!Q_(s)P_(s) +Q2(s)K_(8)] +A !Q,(a)PI(S) + Q2(s)K_(s)]

6,(,) _2(,)

then call the "segment lemma" with 51(8 ) and 62(a).

Step 3: Set P1(8) = g_(8), repeat Step 2 for S_k with k = 1, 2, 3, 4.

Step 4: Set Px(a) = g_(8), repeat Step 2 for S_, with k = 1,2,3,4.

Step 5: Set P_(s) = K_(a), repeat Step 2 for S_, with k = 1,2,3, 4.

Step 6: Set P2(s) = K_(s).

Step 7: check the stability of each following segment.

S_ = Q_(s)[(1 - A)K_(a) + AK_(s)] + Q2(s)P2(s)

S_1 = Q1(8)[(1 -- A)K_(s) + AK](s)] + Q2(s)P2(a)

S_, = Q_(s)[(1 - A)K_(s) + AK_(s)] + Q2(s)P2(s)

S[_ = Q_(s)[(1 - A)K](s) +/K_(a)] + Q2(s)P2(s)

Step 8: Set P_(a) = K_(s), repeat Step 7 for S h with k = 1,2,3,4.



Step 9: Set P2(s) = K_(s), repeat Step 7 for Sgk with k = 1,2,3,4.

Step 10: Set Px(a) = K_(a), repeat Step 7 for S_k with k= 1,2,3,4.

This algorithm can be easily extended to the case of _iQ_(s)Pi(s). The following

figures show the family of polynomials as functions of w. The entire family is Hurwitz

stable if and only if the family does not contain the origin for all w. Clearly Figure

9 shows the family is stable and Figure 10 shows some members in the family are

unstable.

5. i2 Stability Margin in Parameter Space

Consider the following polynomial with parameters Pl, P2, """, Pl

6(.,,p): = [,,o_(p,+ ,',p_)+ ao,(p,+ _p,) +... + _o,(p,+ _p,)] +

[all(Pl + Apl) + al2(p_. + Ap2) +'" + alt(Pt + Apt)Is +

• " + [a,,l(px + Apl) + an2(p2 + Ap2) +"" + a,a(p, + Apt)Is n

= (,_o_p_+ _o_p,+... + ao,p,)+... (_1pl + _.2p_+... + _o,p,),_
6q._

1

÷N, oo,÷ +:..+
.-.,.(o)

A6(*,Ap)

Then the following algorithm provides the £5 stability margin in the parameter space.

Let

A(jw) :=
a_,(jw) a2,(jw) a3,(jw)

a,i(jw) a2i(jw) a3i(jw)

b(j_) :=



where

6o(j,_):: 6o(_)l.=j. = 6;(j,,) + js_'(j,_)

If A(jw)A(jw) r is invertible,

ta := A(jw)T[A(jw)A(jw)r]-Xb(jw).

If A(jw)A(jw) r is not invertible,

t_ := A(jw)T[A(jw)A(jw)r]-_b(jw).

where

A(jw) := [ al,(jw) a2,(jw) aar(jw)

Finally, the 12 stability margin in parameter space is computed by

where

Design Example

p:= rain It_l_
,_(o,_)

]txll = t1_ + t1_ +... + tl,

J202-_pl(02 - 01)Jvp2(02- 01) = Tc

s 2 + pls + P2

a(s) = s,(s, + 2p_ s + 2p_)



0.18_<p2 _< 0.3

o_4 _ vV_.u V_ -_p_ -_0.2

In the following figure, the dotted box indicates the range of parameter perturba-

tions to be tolerated. The circles indicate the lu stability margin of the characteristic

polynomial. If a circle completely covers the box, the stability of the closed loop

system is guaranteed under the given parameter perturbations. Figures show that

several circles that correspond to different controllers.
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C. Appendix
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II DISCUSSION AND DIRECTION OF RESEARCH

The computer aided tool currently under implementation is very useful for future

research on this topic. In addition, it is expected that the tool will be valuable for

engineers who actually perform design and analysis of systems.

Different aspects of robust control research are also under study. While dealing

with various forms of system uncertainties is important, the problems currently under

study are also important and meaningful in practical control systems. Two problems

currently under investigation are, zero assignment and LQG/LTR and _he sensor

failure problem. Details of these problems will be discussed later.


